Cooling and energy saving potentials of shade trees and urban lawns in a desert city
نویسندگان
چکیده
The use of urban vegetation in cities is a common landscape planning strategy to alleviate the heat island effect as well as to enhance building energy efficiency. The presence of trees in street canyons can effectively reduce environmental temperature via radiative shading. However, resolving shade trees in urban land surface models presents a major challenge in numerical models, especially in predicting the radiative heat exchange in canyons. In this paper, we develop a new numerical framework by incorporating shade trees into an advanced single-layer urban canopy model. This novel numerical framework is applied to Phoenix metropolitan area to investigate the cooling effect of different urban vegetation types and their potentials in saving building energy. It is found that the cooling effect by shading from trees is more significant than that by evapotranspiration from lawns, leading to a considerable saving of cooling load. In addition, analysis of human thermal comfort shows that urban vegetation plays a crucial role in creating a comfortable living environment, especially for cities located in arid or semi-arid region. 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Performance of Building Energy Efficiency by Orientation with Regression: a Case of Semi Desert in Iran
In this research multiple-regression analysis with stepwise selection method was employed for investigating the effectof vertical building envelopes solar radiation (Evr) on cooling energy consumption (E cooling) in residential sector.The high capacity of solar energy in semi-arid climate (Shiraz) can provide a part of buildings required energy. Dependson house orientations in two directions of...
متن کاملShade trees reduce building energy use and CO2 emissions from power plants.
Urban shade trees offer significant benefits in reducing building air-conditioning demand and improving urban air quality by reducing smog. The savings associated with these benefits vary by climate region and can be up to $200 per tree. The cost of planting trees and maintaining them can vary from $10 to $500 per tree. Tree-planting programs can be designed to have lower costs so that they off...
متن کاملCool Surfaces and Shade Trees to Reduce Energy Use and Improve Air Quality in Urban Areas
Elevated summertime temperatures in urban ‘heat islands’ increase cooling-energy use and accelerate the formation of urban smog. Except in the city’s core areas, summer heat islands are created mainly by the lack of vegetation and by the high solar radiation absorptance by urban surfaces. Analysis of temperature trends for the last 100 years in several large U.S. cities indicate that, since | 1...
متن کاملFusion of High Resolution Aerial Multispectral and LiDAR Data: Land Cover in the Context of Urban Mosquito Habitat
Remotely sensed multi-spectral and -spatial data facilitates the study of mosquito-borne disease vectors and their response to land use and cover composition in the urban environment. In this study we assess the feasibility of integrating remotely sensed multispectral reflectance data and LiDAR (Light Detection and Ranging)-derived height information to improve land use and land cover classific...
متن کاملThe Study of Thermostat Impact on Energy Consumption in a Residential Building by Using TRNSYS
The present study investigates the effectiveness of thermostat control strategy in cooling energy consumption in residential buildings. To evaluate the energy consumption, two scenarios including a residential zone with and without the thermostat control system are assumed. The TRNSYS software provides an efficient numerical tool to model and evaluate a cooling system. Furthermore, since solar-...
متن کامل